Elektronenschwingungsspektrum

Theorie

Der Beschreibung der Schwingung eines zweiatomigen Moleküls liegt entweder das Modell des harmonischen oder des anharmonischen Oszillators zugrunde. Bei der Betrachtung gemäß dem harmonischen Oszillator geht man vom Hook'schen Gesetz aus und erhält daraus mit der Kraftkonstante f einen Zusammenhang zwischen der Auslenkung der Atome x und der potentiellen Energie V(x):

$$F = -\frac{\partial V}{\partial x} = -f \cdot x \quad \Rightarrow \quad V = \frac{1}{2} \cdot f \cdot x^2 \,. \tag{1}$$

Die Schrödinger-Gleichung liefert für (1), mit der reduzierten Masse μ , die Energieeigenwerte in Abhängigkeit von der Schwingungsquantenzahl v:

$$E(\mathbf{v}) = h \cdot v_0 \cdot \left(\mathbf{v} + \frac{1}{2}\right); \quad v_0 = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{f}{\mu}}. \tag{2}$$

Da das Modell des harmonischen Oszillators dem Verhalten eines realen Moleküls nicht gerecht wird, z.B. dissoziiert das Molekül irgendwann, benutzt man in Ermangelung einer theoretisch ableitbaren mathematischen Beschreibung entweder eine Reihenentwicklung nach Taylor (3) oder den von Morse angegebenen Ansatz (4):

$$V(x) = V(x = 0) + \sum_{k=1}^{n} \frac{\partial^{k} V(x)}{k!} + R_{n+1},$$
(3)

$$V(x) = D \cdot (1 - e^{-a \cdot x})^2. \tag{4}$$

Die Energieeigenwerte von (3) ergeben sich mit der Schrödinger-Gleichung, unter Berücksichtigung der Taylor-Entwicklung bis zum fünften Glied, zu

$$E(\mathbf{v}) = h \cdot v_0 \cdot \left(\mathbf{v} + \frac{1}{2}\right) - h \cdot v_0 \cdot x_0 \cdot \left(\mathbf{v} + \frac{1}{2}\right)^2; \quad v_0 = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{f}{\mu}}, \tag{5}$$

die Energieeigenwerte von (4) zu

$$E(\mathbf{v}) = 2 \cdot \hbar \cdot a \sqrt{\frac{D}{2 \cdot \mu}} \cdot \left(\mathbf{v} + \frac{1}{2}\right) - \frac{\hbar^2 \cdot a^2}{2 \cdot \mu} \cdot \left(\mathbf{v} + \frac{1}{2}\right)^2. \tag{6}$$

Der quadratische Teil von (5) beschreibt die Abweichung vom harmonischen Oszillator (2), x_0 wird als Anharmonizitätskonstante bezeichnet. Für die Schwingungsterme G(v) des anharmonischen Oszillators gilt

$$G(\mathbf{v}) = \frac{E(\mathbf{v})}{h \cdot c} = \tilde{v}_0 \cdot \left(\mathbf{v} + \frac{1}{2}\right) - \tilde{v}_0 \cdot x_0 \cdot \left(\mathbf{v} + \frac{1}{2}\right)^2; \quad \tilde{v}_0 = \frac{1}{2 \cdot \pi \cdot c} \cdot \sqrt{\frac{f}{\mu}}. \tag{7}$$

Die mit steigender Schwingungsquantenzahl v kleiner werdende Differenz zweier Energieniveaus ist

$$\Delta G(v + \frac{1}{2}) = G(v + 1) - G(v) = \tilde{v}_0 (1 - 2 \cdot x_0) - 2 \cdot \tilde{v}_0 \cdot x_0 \cdot v$$
 (8)

und wird an der Dissoziationsgrenze null. Die Schwingungsquantenzahl an der Dissoziationsgrenze ist gegeben zu

$$\mathbf{v}_{\text{Dissoz.}} = \frac{1 - 2 \cdot x_0}{2 \cdot x_0} \,. \tag{9}$$

Damit bei Molekülen der Punktgruppe $D_{\infty h}$ das Übergangsmoment $\hat{\mu}_{vv}$ und damit die Übergangswahrscheinlichkeit ungleich null wird, muss zusätzlich zum Schwingungsübergang noch ein Elektronenübergang erfolgen. Die beobachteten Anregungen entsprechen im Wesentlichen Übergängen zwischen den niedrigen

Schwingungszuständen v=0,1,2 des Elektronengrundzustandes (ohne Index) und verschiedenen Schwingungszuständen des angeregten Elektronenzustandes (Index ´).

Versuch und Auswertung

Das Elektronenschwingungsspektrum von Iod im Dampfzustand (ca. 60 $^{\circ}$ C) wurde als Absorptionsspektrum aufgenommen und die Linien den Bandensystemen für v=0,1,2 zugeordnet. Um das Problem der Zuordnung von Linie, bzw. deren Wellenzahl, und Übergang zu lösen, wurde eine Deslandres-Tabelle aufgestellt. Alle relevanten Daten und Diagramme befinden sich im Anhang.

Die zu bestimmenden Größen wurden aus der Geradengleichung eines Birge-Sponder-Diagramms, einer Auftragung der Wellenzahlendifferenzen aus der Deslandres-Tabelle gegen die Schwingungsquantenzahl des angeregten Elektronenzustandes v´, berechnet. Mittels linearer Regression ergibt sich die Geradengleichung zu

$$\Delta \tilde{v}(v'+\frac{1}{2}) = b + m \cdot v' = 132,0195 \text{ cm}^{-1} - 2,2065 \cdot v' \text{ cm}^{-1}$$
.

Aus dem Birge-Sponder-Diagramm kann die Schwingungsquantenzahl an der Dissoziationsgrenze für den angeregten Elektronenzustand durch Extrapolation auf $\Delta \tilde{\nu} = 0$ zu $v'_{Dissoz.} = 60$ erhalten werden.

Mit (8) ergibt sich die Wellenzahl \tilde{v}_0 und die Anharmonizitätskonstante x_0 :

$$\tilde{v}_0 = b + m = 134,2260 \text{ cm}^{-1}; \quad x_0 = 8,2193 \cdot 10^{-3}.$$

Die Kraftkonstante im angeregten Zustand ergibt sich gemäß (7) zu $f' = 67,3 \text{ N} \cdot \text{m}^{-1}$. Die Dissoziationswellenzahl für den angeregten Elektronenzustand \tilde{D}_0^* ist gegeben zu

$$\tilde{D}_0^* = \tilde{v}_0 \cdot \frac{1 - 2 \cdot x_0}{4 \cdot x_0} = 4015,53 \text{ cm}^{-1}.$$

Die Dissoziationswellenzahlen \tilde{D}_0 (v) für die Dissoziation aus dem Elektronengrundzustand für v=0,1,2 werden für alle Werte aus der Deslandres-Tabelle berechnet, anschließend wird der jeweilige Mittelwert gebildet:

$$\begin{split} \tilde{D}_{0}'(v) &= \nu \left(v', v \right) + \frac{1}{2} \cdot \left(v'_{\text{Dissoz.}} - v' \right) \cdot \Delta \, \tilde{\nu} \left(v' + \frac{1}{2} \right); \\ &\overline{\tilde{D}_{0}}'(1) = 19580 \, \text{cm}^{-1}, \\ &\overline{\tilde{D}_{0}}'(1) = 19358 \, \text{cm}^{-1}, \\ &\overline{\tilde{D}_{0}}'(2) = 19084 \, \text{cm}^{-1}. \end{split}$$

Aus den Dissoziationswellenzahlen ergeben sich die Abstände der Schwingungsniveaus im elektronischen Grundzustand:

$$\Delta G(\frac{1}{2}) = \overline{\tilde{D}_0}'(0) - \overline{\tilde{D}_0}'(1) = 222 \text{ cm}^{-1},$$

$$\Delta G(\frac{3}{2}) = \overline{\tilde{D}_0}'(1) - \overline{\tilde{D}_0}'(2) = 274 \text{ cm}^{-1}.$$

Die Abstände zwischen den Schwingungsniveaus ergeben sich ebenso aus den Mittelwerten der Abstände zwischen den einzelnen Serien der Deslandres-Tabelle, diese Werte liegen jedoch erheblich unter denen, die aus den Dissoziationswellenzahlen berechnet wurden:

$$\Delta G(\frac{1}{2}) = 207 \text{ cm}^{-1}, \Delta G(\frac{3}{2}) = 206 \text{ cm}^{-1}.$$

Analog zum angeregten Zustand wird die Wellenzahl \tilde{v}_0 aus (8) und die Kraftkonstante f aus (7) berechnet:

$$\tilde{v}_0 = 208 \text{ cm}^{-1}; f = 161, 6 \text{ N} \cdot \text{m}^{-1}.$$

Wie erwartet sind beide Werte größer als die entsprechenden Werte des angeregten Elektronenzustandes. Die Dissoziationswellenzahl des Grundzustandes ergibt sich zu

$$\tilde{D}_0 = \overline{\tilde{D}_0}'(0) - \tilde{D}_{Atom} = 19580 \text{ cm}^{-1} - 7650 \text{ cm}^{-1} = 11930 \text{ cm}^{-1}$$
.

Mit der Dissoziationswellenzahl wird die Anharmonizitätskonstante für den Elektronengrundzustand x_0 berechnet, die wie erwartet kleiner als für den angeregten Elektronenzustand ist:

$$\tilde{D}_0 = \tilde{v}_0 \cdot \frac{1 - 2 \cdot x_0}{4 \cdot x_0} \implies x_0 = 4{,}321 \cdot 10^{-3}.$$

Die Schwingungsquantenzahl für die Dissoziationsgrenze im elektronischen Grundzustand ergibt sich gemäß (9) zu $v_{Dissoz.} = 115$.

Die ersten drei Schwingungsniveaus für das Iodmolekül sind mit dem Modell des harmonischen Oszillators und obiger Kraftkonstante gegeben zu

$$E(0) = \frac{h}{4 \cdot \pi} \cdot \sqrt{\frac{f}{\mu}} = 2,1 \cdot 10^{-19} \text{ J}, \ E(1) = \frac{3 \cdot h}{4 \cdot \pi} \cdot \sqrt{\frac{f}{\mu}} = 6,2 \cdot 10^{-19} \text{ J und } E(2) = \frac{5 \cdot h}{4 \cdot \pi} \cdot \sqrt{\frac{f}{\mu}} = 10,3 \cdot 10^{-19} \text{ J}.$$

Die Parameter für das Morse-Potential (4) werden wie folgt berechnet:

$$D = h \cdot c \cdot \left(D_0 + G(0)\right) \approx h \cdot c \cdot \left(D_0 + G(\frac{1}{2})\right) = h \cdot c \cdot \left(11930 \text{ cm}^{-1} + \frac{1}{2} \cdot 207 \text{ cm}^{-1}\right) = 2,39 \cdot 10^{-19} \text{ J},$$

$$a = \frac{1}{2} \cdot \sqrt{\frac{2 \cdot f}{D}} = 1,84 \cdot 10^{-10} \text{ m}^{-1}.$$

Für den harmonischen Ansatz (1) und den Morse-Ansatz (4) ergeben sich die Gleichungen für das Iodmolekül zu

$$V(x) = 80.8 \text{ N} \cdot \text{m}^{-1} \cdot x^2; \quad V(x) = 2.39 \cdot 10^{-19} \text{ J} \cdot \left(1 - e^{\left(1.84 \cdot 10^{-10} \text{ m}^{-1} \cdot x\right)}\right)^2.$$

Deslandres-Tabelle

v´	$\mathbf{v} = 0$		v = 1		v=2
8					16208
0					109
9					16317 99
10					16416
					112
11					16528 102
12					16630
					104
13					16734 81
14			17040	225	16815
			96		118
15	17345	209	17136 98	203	16933 95
16	100 17445	211	17234	206	17028
	88		86		96
17	17533	213	17320	196	17124
18	102 17635	216	99 17419	199	97 17221
	90		101	1,,,	1,221
19	17725	205	17520		
20	78 17803	206	77 17597	\varnothing = 205,8	
20	106	200	102		
21	17909	210	17699		
22	79 17088	100	91 17700		
22	17988 81	198	17790 79		
23	18069	200	17869		
24	81 18150	202	79 17948		
24	82	202	81		
25	18232	203	18029		
26	83 18315				
20	69	$\emptyset = 206,6$			
27	18384	~ 200,0			
20	70				
28	18454 71				
29	18525				
20	71				
30	18596 71				
31	18667				
22	73				
32	18740 58				
33	18798				
	58				
34	18856 59				
35	18915				
	44				
36	18959				

Dissoziationswellenzahlen

v´	v = 0	v = 1	v=2
8			19042
9			18842
10			19216
11			19027
12			19126
13			18638
14		19248	19529
15	19595	19341	19071
16	19381	19126	19140
17	19726	19449	19210
18	19525	19540	
19	19324	19099	
20	19923	19637	
21	19450	19474	
22	19527	19291	
23	19568	19331	
24	19626	19406	
25	19685		
26	19488		
27	19539		
28	19590		
29	19626		
30	19661		
31	19726		
32	19552		
33	19581		
34	19623		
35	19465		
Ø	19580	19358	19084